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Abstract

Dynamic neural networks are often used for nonlinear systemidentification. This
paper presents a novel series-parallel dynamic neural network structure which is
suitable for nonlinear system identification. A theoretical proof is given showing
that this type of dynamic neural network is able to approximate finite trajectories
of nonlinear dynamical systems. Also, this neural network is trained to identify a
practical nonlinear 3D crane system, which could not be identified by the previous
type of neural networks.

Keywords: recurrent neural networks, system identification, nonlinear systems

1. Introduction

The introduction of artificial neural network methods for the identification
and control of dynamical systems two decades ago has had a sgnificant impact
in control systems research [14, 13]. A recurrent neural network is a closed loop
system, with feedback paths introducing dynamics into the model. They can be
trained to learn the system dynamics without assuming much knowledge about
the structure of the system under consideration.

Dynamic neural networks (DNNs) have important properties that make them
convenient to be used together with nonlinear control approaches based on state
space models and differential geometry [6], such as feedback linearisation. How-
ever the mapping capability of DNNs are quite limited due to their fixed structure,
that is, the number of layers and the number of hidden units [10] [12]. An example
shown in this paper has demonstrate this limitation of DNNs.The development of
novel DNN structures, which has good mapping capability, isa relevant challenge
being addressed in this paper and previous work [3]. Although the structure is
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changed minorly only, the mapping capability of the new desined DNN in this pa-
per has been improved dramatically. Dengat al [3] presents a new dynamic neural
network structure which is suitable for the identification of highly nonlinear sys-
tems, which needs the outputs from the real system for training and operation.
This paper presents a hybrid dynamic neural network structure which presents a
similar idea of serial-parallel hybrid structure, but it uses an output from another
neural network for training and operation classified as a series-parallel model [14].
This type of DNNs does not require the output of the plant to beused as an input to
the model.This neural network has much better mapping capabilities and is more
flexibile in traing complicated systems, compared to the DNNs in [6]. A theo-
retical proof showing how this hybrid dynamic neural network can approximate
finite trajectories of general nonlinear dynamic systems isgiven. To illustrate the
capabilities of the new structure, neural networks are trained to identify a real
nonlinear 3D crane system.

The paper is organized as follows. Section2 discusses the universal approx-
imation property of static multilayer perceptrons. Section 3 introduces the class
of dynamic neural networks of interest in this paper. Section 4 discusses theoret-
ical results on the approximation ability of dynamic neuralnetworks. Section5
presents an example. Finally, Section6 gives concluding remarks.

2. Different Types of Dynamic Neural Networks

Dynamic neural networks are made of interconnected dynamicneurons, also
called units. The class of neuron of interest in this paper isdescribed by the
following differential equation:

ẋi = −βixi +
N

∑

j=1

ωijσ(yj) +
m

∑

j=1

γijuj, (1)

whereβi, ωij andγij are adjustable weights, with1/βi a positive time constant
andxi the activation state of theith unit,yj the actual system output or the hidden
state of thejth unit, σ : R → R a sigmoid function andu1, . . . , um the input
signals.

A dynamic neural network is formed by a single layer ofN units. The first
n units are taken as the output of the network, leavingN − n units as hidden
neurons. A type 1 DNN is defined by the following vectorised expression:

ẋ = −βx + ωσ(y) + γu

yn = Cnx ,
(2)
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wherex are coordinates onRN , β ∈ R
N×N is a diagonal matrix with diagonal

elements{β1, . . . , βN}, ω ∈ R
N×N , γ ∈ R

N×m are weight matrices,σ(x) =
[σ(x1), . . . , σ(xN)]T is a vector sigmoid function,u ∈ R

m is the input vector,yn ∈
R

n is the plant output vector,y = [yn
T , xn+1, ..., xN ]T , Cn = [In×N , 0n×(N−n)].

A type 1 DNN differs from the dynamic neural network described in Chapter
4 of the book [6], which in this paper is known as type 2 DNN, in the argument
of the vector sigmoid functionσ(·). A type 2 DNN is described by the following
vectorised expression:

ẋ = −βx + ωσ(x) + γu

yn = Cnx ,
(3)

Define the output state vectorxp = [xp
1, ..., x

p
n]T = yn as the internal state of the

n output units. Define the hidden state vectorxh = [xh
1 , ..., x

h
N−n]T as the internal

state of theN − n hidden units. A type 1 DNN uses plant output and the hidden
state in the argument of the vector sigmoid functionσ(·), while a type 2 DNN
uses the whole state vector of the network, which consists ofthe output states and
the hidden states, in the argument of the vector sigmoid function. The difference
is illustrated in Figure 1 and in Figure 2.

A type 3 DNN is defined by the following vectorised expression:

ẋ = −βx + ωσ(ŷ) + γu

yn = Cnx ,
(4)

wherex are coordinates onRN , β ∈ R
N×N is a diagonal matrix with diagonal

elements{β1, . . . , βN}, ω ∈ R
N×N , γ ∈ R

N×m are weight matrices,σ(x) =
[σ(x1), . . . , σ(xN)]T is a vector sigmoid function,u ∈ R

m is the input vec-
tor, xe ∈ R

n is the estimated output vector of another neural network,ŷ =
[xeT , xn+1, ..., xN ]T , Cn = [In×N , 0n×(N−n)].

A type 3 DNN differs from a type 1 DNN, in the argument of the vector sig-
moid functionσ(·). A type 3 DNN is different from a type 1 DNN in that a type
3 DNN uses the outputs from another neural network and the hidden states in the
argument of the vector sigmoid functionσ(·), while a type 1 DNN uses the plant
outputs and the hidden states of the network, which consistsof the output states
and the hidden states, in the argument of the vector sigmoid function. The type 3
DNN is illustrated in Figure 3
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Figure 1: Block diagram of type 1 DNN
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Figure 2: Block diagram of type 2 DNN

3. The Universal Approximation Property of Static Multilayer Networks

An important result of approximation theory states that a three-layer feedfor-
ward neural network with sigmoidal activation functions inthe hidden layer and
linear activation functions in the output layer, has the ability to approximate any
continuous mappingf : R

n → R
q to arbitrary precision, provided that the num-

ber of units in the hidden layer is sufficiently large. This isstated by the following
theorem, which is the theory basis of replacing the real outputs of the type 1 DNN
presented in [3] with the outputs from another neural network in this new hybrid
DNN, shown in Figure 3.

Theorem 1. Let K be a compact set ofRn and f : K → R
q be a continuous

mapping. Then, for arbitraryǫ > 0 and the usual topologyRq induced by the
netric m there exists ak-layer (k ≥ 3) network of the input-output̂f , such that
maxx∈K ||f(x)− f̂(x)|| ≤ ǫ.
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Figure 3: Block diagram of type 3 DNN

The following theorem is a version of the fundamental approximation theorem
provided by Funahashi [4]. Similar results have been obtained by Cybenko [1] and
others.

Theorem 2. Let K be a compact set ofRn and f : K → R
q be a continuous

mapping. Then, for arbitraryǫ > 0, there exists an integerNh, a q × Nh matrix
W2, anNh × n matrixW1, and anNh dimensional vectorb such that:

max
x∈K
||f(x)−W2σ(W1x + b)|| ≤ ǫ, (5)

whereσ : R
Nh → R

Nh is a sigmoid mapping whose elements are defined as
follows:

σ(z) =







σ(z1)
...

σ(zNh
),






(6)

wherez = [z1, . . . , zNh
]T ∈ R

Nh .

For the proof of the above theorem, see [4].

4. Approximation Ability of Type 1 and Type 3 Dynamic Neural Networks

This section describes how any finite time trajectory of a given finite-dimensional
non–autonomous dynamic systemẋ(t) = f(x(t), u(t)) can be approximated by
type 1 and type 3 DNNs. The theory uses the fundamental approximation the-
orem of neural networks and shows that, under certain conditions, there exists a
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dynamic neural network with a sufficient number of hidden units such that the
approximation error is bounded to a desired level. This theory is inspired by pre-
vious work on the approximation of finite trajectories of autonomous nonlinear
systems [5, 9]. The book [6] presents a theorem that shows that a type 2 DNN can
approximate general nonlinear systems.

Corollary 1 (Garces et al., 2003). Let K and U be compact subsets ofR
n and

R
m, respectively, andf : K × U → R

n be a continuous mapping. Then, for
arbitrary ǫ > 0, there exists an integerNh, an n × Nh matrix W2, an Nh × n
matrixW1, anNh ×m matrixγ1, and anNh dimensional vectorb such that:

max
x∈K,u∈U

||f(x, u)−W2σ(W1x + γ1u + b)|| ≤ ǫ, (7)

whereσ : R
Nh → R

Nh is a sigmoid mapping whose elements are defined as
follows:

σ(z) =







σ(z1)
...

σ(zNh
),






(8)

wherez = [z1, . . . , zNh
]T ∈ R

Nh .

Proof. The proof follows directly from Theorem 2, by making the following sub-
stitutions:K ← K × U , q ← (n + m), x← [xT uT ]T , W1 ← [W1 γ1].

Theorem 3. Let D be an open subset ofR
n, andU an open subset ofRm. Let

f : D × U → R
n be aC1-mapping,u : [0, T ] → U be aC1 function,K̃ be a

compact subset ofD. Suppose that there exists a setK ⊂ K̃ so that any solution
x(t) with initial valuex(0) ∈ K of the non-autonomous system

ẋ(t) = f(x(t), u(t)) (9)

is defined onI = [0, T ] (0 < T < ∞) for u(t) ∈ U with t ∈ I, and is included
in K̃ for anyt ∈ I. Then, for an arbitraryε > 0 , there exists a non-autonomous
dynamic neural network withn output units with statesxo ∈ R

n andNh hidden
units with statesxh ∈ R

Nh , of the form:

ż = −βz + ωσ(z) + γū, (10)

wherez = [xoT xhT
]T ∈ R

n+Nh , ū = [uT u̇T ]T ∈ R
2m, β ∈ R

n+Nh×n+Nh is a
diagonal matrix,ω ∈ R

n+Nh×n+Nh andγ ∈ R
n+Nh×2m are weight matrices, such
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that for a solutionx(t) satisfying Equation (9), and an appropriate initial state,
the states of the output units of the network,xo(t), approximate the solution of the
non-autonomous system:

max
t∈I
||x(t)− xo(t)|| < ε; I = [0, T ] (0 < T <∞). (11)

Proof. See the book [6].

Theorem 4. Let D be an open subset ofR
n, andU and open subset ofRm. Let

f : D × U → R
n be aC1-mapping,u : [0, T ] → U be aC1 function,K̃ be a

compact subset ofD. Suppose that there exists a setK ⊂ K̃ so that any solution
x(t) with initial valuex(0) ∈ K of the non-autonomous system

ẋ(t) = f(x(t), u(t)), (12)

is defined onI = [0, T ] (0 < T < ∞) for u(t) ∈ U with t ∈ I, and is included
in K̃ for anyt ∈ I. Then, for an arbitraryε1 > 0 , there exists a non-autonomous
dynamic neural network withn output units with statesxp ∈ R

n andNh hidden
units with statesxh ∈ R

Nh , of the form:

ż = −βz + ωσ(z1) + γū, (13)

wherez = [xpT xhT
]T ∈ R

n+Nh, z1 = [xT xhT
]T ∈ R

n+Nh , ū = [uT u̇T ]T ∈ R
2m,

β ∈ R
n+Nh×n+Nh is a diagonal matrix,ω ∈ R

n+Nh×n+Nh and γ ∈ R
n+Nh×2m

are weight matrices, such that for a solutionx(t) satisfying Equation (12), and
an appropriate initial state, the states of the output unitsof the network,xp(t),
approximate the solution of the non-autonomous system:

max
t∈I
||x(t)− xp(t)|| < ε1; I = [0, T ] (0 < T <∞). (14)

Proof. This proof uses Lemmas 1, 2 and 3, which are given in the appendix.
For givenε1 > 0 , chooseε > 0, ε2 > 0 and such thatε+ε2 ≤ ε1, ε2 ≤

η1lG
exp(lGT−1)

.

Define now the mappingF : R
n+Nh × R

2m → R
n+Nh as follows:

F (z, ¯̄u) = −βz + ωσ(z) + γ̄ ¯̄u. (15)

Then the dynamic system defined byF is:

ż = −βz + ωσ(z) + γ̄ ¯̄u, (16)
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where¯̄u = [ū δz]T , δz = [δx 0Nh×Nh
]T , δx = [x − xp], γ̄ = [γ 0(n+Nh)×(n+Nh)].

Equation (16) is equivalent to Equation (10).
Define a new mapping̃F : R

n+Nh × R
2m → R

n+Nh as follows:

F̃ (z̃, ¯̄u) = −βz̃ + ωσ(z̃ + [0n×n I(n+Nh)×(n+Nh)]¯̄u) + γ̄ ¯̄u. (17)

Then the dynamic system defined byF̃ is:

˙̃z = −βz̃ + ωσ(z̃ + [0n×n I(n+Nh)×(n+Nh)]¯̄u) + γ̄ ¯̄u. (18)

Equation (18) is equivalent to Equation (13). LetlG is the Lipschitz constant of
F in z. It is not difficult to infer thatF̃ is also Lipschitz, so that Lemma 2 is
applicable toF andF̃ .

Note that

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| = ||ω|| · ||σ(z)− σ(z + δz)|| (19)

Suppose thatxi is an element ofz and thatδxi is an element ofδz. Sigmoid
function is a continuous and differentiable function. By using Taylor expansion
to this sigmoid function:

||σ(xo
i)− σ(xo

i + δxi)|| =

|| − σ′(xo
i)δxi −

1
2
σ′′(xo

i)δxi
2

− · · · −O(δxi
n)||, (20)

where

O(δxi
n) =

∫ z+δz

z

f (n+1)(t)
(z − t)n

n!
dt, (21)

by using Lemma 3

O(δxi
n) = σ(n+1)(ζ)

(z − ζ)n

n!
δz, (22)

for ζ ∈ [z, z + δz], therefore,

O(δxi
n) ≤ σ(n+1)(ζ)

δzn+1

n!
, (23)

According to Equation (23), Equation (20) becomes

||σ(xo
i)− σ(xo

i + δxi)|| ≤ δxid ≤ εd, (24)
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whered = || − σ′(xo
i) −

1
2
σ′′(xo

i)δxi − · · · − σ(n+1)(ζ) δzn

n!
|| is bounded. In

conclusion, Equation (24) can be written as:

||σ(xo
i)− σ(xo

i + δxi)|| ≤ εd, (25)

According to Equation (25), Equation (19) can be written as:

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| ≤ ||ω||dε, (26)

Equation (26) can be written as:

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| ≤ η1, (27)

by using Lemma 2

||xo(t)− xp(t)|| ≤
η1

lG
(exp(lGt)− 1), (28)

max
t∈I
||xo(t)− xp(t)|| < ε2, (29)

max
t∈I
||x(t)− xp(t)|| ≤

max
t∈I

(||x(t)− xo(t)||+ ||xo(t)− xp(t)||) ≤

max
t∈I
||x(t)− xo(t)||+ max

t∈I
||xo(t)− xp(t)|| ≤

(ε2 + ε) ≤ ε1, (30)

which completes the proof.

Theorem 5. Let D be an open subset ofR
n, andU an open subset ofRm. Let

f : D × U → R
n be aC1-mapping,u : [0, T ] → U be aC1 function,K̃ be a

compact subset ofD. Suppose that there exists a setK ⊂ K̃ so that any solution
x(t) with initial valuex(0) ∈ K of the non-autonomous system

ẋ(t) = f(x(t), u(t)), (31)

is defined onI = [0, T ] (0 < T < ∞) for u(t) ∈ U with t ∈ I, and is included
in K̃ for anyt ∈ I. Then, for an arbitraryε3 > 0 , there exists a non-autonomous
dynamic neural network withn output units with statesxp ∈ R

n andNh hidden
units with statesxh ∈ R

Nh , of the form:

ż = −βz + ωσ(z2) + γū, (32)
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whereo is the output vector from another neural network,z = [xpT xhT
]T ∈

R
n+Nh , z2 = [xeT xhT

]T ∈ R
n+Nh , ū = [uT u̇T ]T ∈ R

2m, β ∈ R
n+Nh×n+Nh is a

diagonal matrix,ω ∈ R
n+Nh×n+Nh andγ ∈ R

n+Nh×2m are weight matrices, such
that for a solutionx(t) satisfying Equation (12), and an appropriate initial state,
the states of the output units of the network,xe(t), approximate the solution of the
non-autonomous system:

max
t∈I
||x(t)− xe(t)|| < ε3; I = [0, T ] (0 < T <∞). (33)

Proof. This proof is similar to Theorem 4 and uses Lemmas 1, 2 and 3, which
are given in the appendix.

For givenε3 > 0 , chooseε > 0, ε4 > 0 and such thatε + ε4 ≤ ε3, ε4 ≤
η1lG

exp(lGT−1)
. Define now the mappingF : R

n+Nh × R
2m → R

n+Nh as follows:

F (z, ¯̄u) = −βz + ωσ(z) + γ̄ ¯̄u. (34)

Then the dynamic system defined byF is:

ż = −βz + ωσ(z) + γ̄ ¯̄u, (35)

where¯̄u = [ū δz]T , δz = [δx 0Nh×Nh
]T , δx = [x − xe], γ̄ = [γ 0(n+Nh)×(n+Nh)].

Equation (35) is equivalent to Equation (10).
Define a new mapping̃F : R

n+Nh × R
2m → R

n+Nh as follows:

F̃ (z̃, ¯̄u) = −βz̃ + ωσ(z̃ + [0n×n I(n+Nh)×(n+Nh)]¯̄u) + γ̄ ¯̄u. (36)

Then the dynamic system defined byF̃ is:

˙̃z = −βz̃ + ωσ(z̃ + [0n×n I(n+Nh)×(n+Nh)]¯̄u) + γ̄ ¯̄u. (37)

Equation (37) is equivalent to Equation (32). LetlG is the Lipschitz constant of
F in z. It is not difficult to infer thatF̃ is also Lipschitz, so that Lemma 2 is
applicable toF andF̃ .

Note that

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| = ||ω|| · ||σ(z)− σ(z + δz)|| (38)

Using the similar method as in 4, the following equation could be obtained:

||F (z̃, ¯̄u)− F̃ (z̃, ¯̄u)|| ≤ η1, (39)
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by using Lemma 2

||xo(t)− xe(t)|| ≤
η1

lG
(exp(lGt)− 1), (40)

max
t∈I
||xo(t)− xe(t)|| < ε2, (41)

max
t∈I
||x(t)− xe(t)|| ≤

max
t∈I

(||x(t)− xo(t)||+ ||xo(t)− xe(t)||) ≤

max
t∈I
||x(t)− xo(t)||+ max

t∈I
||xo(t)− xe(t)|| ≤

(ε4 + ε) ≤ ε3. (42)

which completes the proof. �

5. NLARX and its training procedure

The NLARX structure can take into account the dynamics of the system by
feeding previous network outputs back into the input layer.It also enables the
user to define how many previous output and input time steps are required for rep-
resenting the systems dynamics best. In this paper, an NLARX model is applied.
It represents a recurrent neural network, which fits the purpose of non-linearity
of the problem. A typical structure of a NLARX model is illustrated in Figure 4.
The inputs are represented byu(n) and the outputs are described byy(n). The
formulation of this NLARX model can be described as:

y(n) = F (y(n− 1), . . . , y(n− ny), u(n− 1), . . . ,
u(n− nu), θ)

(43)

whereny is the number of past output terms used to predict the currentoutput,nu
is the number of input terms used to predict the current output.

This neural network model training problem can be cast as a non-linear un-
constrained optimization problem:

min
θ

FM(θ, ZM) =
1

2M

M
∑

k=1

‖y(k)− ŷ(k|θ)‖2 (44)

whereZM = [y(k), u(k)]k=1,...,M is a training data set,y(k) represents the mea-
sured output,̂y(k|θ) is the predicted output from the neural network NLARX
output,|| · ||2 is 2-norm operation, andθ is a parameter vector.
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Figure 4: Structure of an NLARX

The optimization problem minimizes the averaged distance between the pre-
dicted outputs and the measured output of training samples.Predicted output of
an NLARX model is a function of regressors which are transformations of past
inputs and past outputs. Usually this function has a linear block and a nonlinear
block. The predicted output of the model is the sum of the outputs of the two
blocks. Typical regressors are simply delayed input or output variables. More
advanced regressors are in the form of arbitrary user-defined functions of delayed
input and output variables.

The NLARX training process is as follows. Given a neural network described
by Equation (43), there is an error metric that is referred toas performance in-
dex of Equation (44), which is to be minimized. This index is arepresentation
of the approximation of the network to some given training patterns. The task
will be to modify the network parametersθ to reduce the indexFM(θ, ZM) over
the complete trajectory to achieve the minimal value. In this paper the neural
networks are trained using gradient descent algorithms while the initial value of
θ is perturbed several times in order to avoid the local minimal solution. The
gradient descent methods will calculate the vector∇θFM whose elements are
∂FM

∂θi
(i = 1, · · · , i, · · · , p). The training algorithm will find the parameters of the

network for which the performance index has reached a desirable value. Given
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a vectorising trajectory for the network output and training patterns, the perfor-
mance index is the Euclidean norm of the error matrix of the whole training batch
for the output.

Fig 5 shows the training (the top figure) and validation (the bottom figure)
trajectories forxc of the crane. Fig 6 shows the training (the top figure) and
validation trajectories (the bottom figure) foryc of the crane. Fig 7 shows the
training (the top figure)and validation (the bottom figure) for yc of the crane. Fig
7 shows the training (the top figure) and validation (the bottom figure) forzc of the
crane. This NLARX is used to train a type 3 DNN. NLARX is used in a recursive
way, which uses the past mode outputs.
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Figure 5: Training and validation trajectories of NLARX forxc
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Figure 6: Training and validation trajectories of NLARX foryc
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Figure 7: Training and validation trajectories of NLARX forzc

6. Example

The 3D crane consists of a payload hanging on a pendulum-likelift-line wound
by a motor mounted on a cart (Figure 8). The 3D crane system is multivariable, it
exhibits highly nonlinear dynamics, and has oscillatory behaviour with different
time scales, which makes it a challenging benchmark for nonlinear identification,
particularly with recurrent model structures. The payloadis lifted and lowered in
thez direction. Both the rail and the cart are capable of horizontal motion in thex
direction. The cart is capable of horizontal motion along the rail in they direction.
Therefore the payload attached to the end of the lift-line can move freely in 3 di-
mensions. The 3D crane is driven by the three DC motors and is fully interfaced
to MATLAB and SIMULINK. The crane has three manipulated inputs, which are
the references to PWM circuits that drive three DC motors, andfive measurements
obtained via optical encoders.

The schematic diagram of the 3D crane is given in Figure 9.
There are five measured quantities:

• xw (not shown in Figure 9) denotes the distance of the rail with the cart from
the centre of the construction frame;

• yw (not shown in Figure 9) denotes the distance of the cart from the centre
of the rail;

• R denotes the length of the lift-line;

• α denotes the angle between they axis and the lift-line;
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Figure 8: The 3D crane system setup.

• β denotes the angle between the negative direction on thez axis and the
projection of the lift-line onto thexz plane.

The position in cartesian co-ordinates of the payload is denoted byxc, yc, zc and
can be found from the five measurements using kinematic equations given in [11].
A dynamic model of this crane is shown in [11].

According to Theorem 1, the dynamics of this crane could always be identified
by a feedforwad neural network with a sufficient number of hidden states. How-
ever, due to personal computer’s memory limits, a feedforward neural network is
not found for the crane. Instead, A NLARX (non-linear autoregressive exogenous
input) model is identified for the dynamics of the crane, which could be used to
illustrate the idea of the type 3 DNN. The NLARX model could be describe as
follows: The output of the NLARX is feed back into the input layer. In addition,
the input allows consideration of previous inputs in order to incorporate dynamics
within the systems behavior.

Three neural networks of type 1, 2 and 3 were used to identify three-input
three-output models, which had as inputs the three reference voltages to the PWM
circuits and as outputs the three co-ordinates of the payload position. Training
was performed using a genetic algorithm with real enconding[2]. In these three
cases, a 6-state dynamic neural network structure was chosen. Figure 10 shows
the training output and the model output using the type 1 neural network. Figure
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11 shows the validation output and model output for the same case. Figure 12
shows the training output and the model output for type 2 dynamic neural network.
Figure 13 shows the validation data and model output for the same case. For both
Figure 13 and Figure 12, there is no improvement on the results with the increase
of iterations. Figure 14 shows the training output and the model output for type
3 dynamic neural network. Figure 15 shows the validation data and model output
for the same case.

It is not difficult to see that a type 2 DNN had problems to approximate the
dynamic behaviour of the system, whereas the type 1 and 3 DNN,which was
easier to train, was able to approximate the system more accurately. The better
approximation capability exhibited by the type 1 and 3 DNN can be attributed to
the fact that this structure uses both output and input information, as it is a series-
parallel model. But type 3 DNN does not require the plant output to operate.
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Figure 10: Training trajectories and model outputs using the type 1 DNN

7. Conclusions

This paper presented a novel hybrid dynamic neural network structure and it
has been proved that the network has the ability to approximate finite trajectories
of non-autonomous nonlinear dynamic systems and provide flexibility which does
not depend on the outputs of the plant for operation. An example has been given
to demonstrate the effectivity of the proposed structure inapproximating com-
plex nonlinear dynamics, and its performance has been favourably compared, in
terms of training difficulty and approximation ability, with a previously proposed
dynamic neural network structure.
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The following Lemmas are useful for the proof of Theorem 4.

Lemma 1 (Gronwall’s inequality). Let v : [t0, tf ] → R be continuous and non-
negative. Suppose thatC ≥ 0 andL ≥ 0 are real numbers such that

v(t) ≤ C +

∫ t

t0

Lv(τ)dτ (.1)
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Figure 11: Validation trajectories and model outputs usingthe type 1 DNN

for all t ∈ [t0, tf ]. Then

v(t) ≤ C exp(L|t− t0|) (.2)

for all t ∈ [t0, tf ]

Proof. See Chapter 8 of [7].

Lemma 2. LetF , F̃ : S × U → R
n be Lipschitz continuous mappings andL be

a Lipschitz constant ofF (x, u) in x on S × U . Suppose that for allx ∈ S and
u ∈ U :

||F (x, u)− F̃ (x, u)|| < ε (.3)

If x(t) andx̃(t), are solutions to

ẋ = F (x, u)

˙̃x = F̃ (x̃, u)
(.4)

respectively, on some intervalI = {t ∈ R|t0 ≤ t ≤ tf}, andx(t0) = x̃(t0), then

||x(t)− x̃(t)|| ≤
ε

L
(exp(L|t− t0|)− 1) (.5)

holds for allt ∈ I.
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Figure 12: Training trajectories and model outputs using the type 2 DNN

Proof. Please see Chapter 15 of [7].

Lemma 3. Letf(x) be an integrable function in the interval(a, b). A pointc can
be found betweena andb such that

∫ b

a

f(x)dx = f(c)(a− b) (.6)

Proof. See Chapter XIII of [8].
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