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Jiamei Deng
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Abstract

Dynamic neural networks are often used for nonlinear systiemtification. This
paper presents a novel series-parallel dynamic neuralonketstructure which is
suitable for nonlinear system identification. A theordtmaof is given showing
that this type of dynamic neural network is able to approxeriite trajectories
of nonlinear dynamical systems. Also, this neural netwsrkained to identify a
practical nonlinear 3D crane system, which could not betitied by the previous
type of neural networks.

Keywords: recurrent neural networks, system identification, nomiirsystems

1. Introduction

The introduction of artificial neural network methods foe tldentification
and control of dynamical systems two decades ago has hadifecaghimpact
in control systems research [14, 13]. A recurrent neuraloek is a closed loop
system, with feedback paths introducing dynamics into toeleh They can be
trained to learn the system dynamics without assuming muachviedge about
the structure of the system under consideration.

Dynamic neural networks (DNNSs) have important propertieg thake them
convenient to be used together with nonlinear control aggres based on state
space models and differential geometry [6], such as feddibearisation. How-
ever the mapping capability of DNNs are quite limited dudtirt fixed structure,
that is, the number of layers and the number of hidden undq 2]. An example
shown in this paper has demonstrate this limitation of DNNe development of
novel DNN structures, which has good mapping capabilitg,nslevant challenge
being addressed in this paper and previous work [3]. Althoting structure is
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changed minorly only, the mapping capability of the new dediDNN in this pa-
per has been improved dramatically. Dexti@l [3] presents a new dynamic neural
network structure which is suitable for the identificatidrhahly nonlinear sys-
tems, which needs the outputs from the real system for hrgiand operation.
This paper presents a hybrid dynamic neural network streicttnich presents a
similar idea of serial-parallel hybrid structure, but iegsan output from another
neural network for training and operation classified asi@squarallel model [14].
This type of DNNs does not require the output of the plant tadexl as an input to
the model.This neural network has much better mapping diitpedand is more
flexibile in traing complicated systems, compared to the BNIN[6]. A theo-
retical proof showing how this hybrid dynamic neural netioan approximate
finite trajectories of general nonlinear dynamic systenggven. To illustrate the
capabilities of the new structure, neural networks arenémito identify a real
nonlinear 3D crane system.

The paper is organized as follows. Sectibdiscusses the universal approx-
imation property of static multilayer perceptrons. Sattiantroduces the class
of dynamic neural networks of interest in this paper. Sectidiscusses theoret-
ical results on the approximation ability of dynamic neuratworks. Sectiord
presents an example. Finally, Sectibgives concluding remarks.

2. Different Typesof Dynamic Neural Networks

Dynamic neural networks are made of interconnected dynaeucons, also
called units. The class of neuron of interest in this papeteiscribed by the
following differential equation:

N m
& = —fixi + Z wio (y5) + Z Vi 1)
s j=1

where;, w;; and-;; are adjustable weights, witly3; a positive time constant
andz; the activation state of thih unit, y; the actual system output or the hidden
state of thejth unit, o : R — R a sigmoid function and., . .., u,, the input
signals.

A dynamic neural network is formed by a single layer/éfunits. The first
n units are taken as the output of the network, leavg- »n units as hidden
neurons. A type 1 DNN is defined by the following vectorisegression:

&= —Pr+wo(y) +yu

s = Co (2)



wherez are coordinates oR", 3 € RY*¥ is a diagonal matrix with diagonal
elements{3,,..., 8y}, w € RN ~ ¢ R¥*™ gre weight matricesy(z) =
[o0(x1),...,0(xy)]T is avector sigmoid function, € R™ is the input vectory,, €
R" is the plant output vectoy, = [y,,”, Zn+1, ..., n]7, Co = [Lnxns Opx(v—n))-

A type 1 DNN differs from the dynamic neural network descdlie Chapter
4 of the book [6], which in this paper is known as type 2 DNN,he argument
of the vector sigmoid function(-). A type 2 DNN is described by the following
vectorised expression:

&= —Pr +wo(x)+ yu

s = Cot 3)

Define the output state vectof = [z}, ...,22]" = y,, as the internal state of the
n output units. Define the hidden state vectbr= [z}, ..., 2% _]7 as the internal
state of theV — n hidden units. A type 1 DNN uses plant output and the hidden
state in the argument of the vector sigmoid functian), while a type 2 DNN
uses the whole state vector of the network, which considtseobutput states and
the hidden states, in the argument of the vector sigmoidtimmcThe difference
is illustrated in Figure 1 and in Figure 2.

A type 3 DNN is defined by the following vectorised expression

&= —px+wo(y)+yu

e (4)

wherex are coordinates oR", 3 ¢ RY*¥ is a diagonal matrix with diagonal
elements{f,,...,0n}, w € RN, v € RV¥*™ are weight matricesg(z) =
[o0(x1),...,0(xy)]T is a vector sigmoid functiony € R™ is the input vec-
tor, z¢ € R"™ is the estimated output vector of another neural netwgrks
2T Tty s )T, Co = [Lnsens O (v—m)]-

A type 3 DNN differs from a type 1 DNN, in the argument of the tgcsig-
moid functiono(-). A type 3 DNN is different from a type 1 DNN in that a type
3 DNN uses the outputs from another neural network and thdehidtates in the
argument of the vector sigmoid functien-), while a type 1 DNN uses the plant
outputs and the hidden states of the network, which considtse output states
and the hidden states, in the argument of the vector signuoictibn. The type 3
DNN is illustrated in Figure 3
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Figure 2: Block diagram of type 2 DNN

3. The Universal Approximation Property of Static Multilayer Networks

An important result of approximation theory states thatrag¢Hayer feedfor-
ward neural network with sigmoidal activation functionghe hidden layer and
linear activation functions in the output layer, has thdighio approximate any
continuous mapping : R” — R? to arbitrary precision, provided that the num-
ber of units in the hidden layer is sufficiently large. Thistated by the following
theorem, which is the theory basis of replacing the realutstpf the type 1 DNN
presented in [3] with the outputs from another neural nekvitoithis new hybrid
DNN, shown in Figure 3.

Theorem 1. Let K be a compact set &” and f : K — R? be a continuous
mapping. Then, for arbitrary > 0 and the usual topologR? induced by the
netric m there exists &-layer (¢ > 3) network of the input-outpuf, such that

maxeer || f(2) — f(2)]] < e
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The following theorem is a version of the fundamental appnation theorem
provided by Funahashi [4]. Similar results have been obthry Cybenko [1] and
others.

Theorem 2. Let K be a compact set " and f : K — R? be a continuous
mapping. Then, for arbitrary > 0, there exists an intege¥,, a ¢ x N, matrix
W,, an N, x n matrix W, and anV,, dimensional vectob such that:

max || f(z) — Wao(Wiz + b)|| <, (5)

zeK

wheres : RV — RM is a sigmoid mapping whose elements are defined as
follows:

o(21)
oz)=| (6)
U(ZNh)a

wherez = [z1,...,2y,]T € RV,

For the proof of the above theorem, see [4].

4. Approximation Ability of Type 1 and Type 3 Dynamic Neural Networks

This section describes how any finite time trajectory of @gifinite-dimensional
non—-autonomous dynamic systert) = f(z(t),u(t)) can be approximated by
type 1 and type 3 DNNs. The theory uses the fundamental ajppation the-
orem of neural networks and shows that, under certain donditthere exists a



dynamic neural network with a sufficient number of hiddentsisuch that the
approximation error is bounded to a desired level. Thistheoinspired by pre-
vious work on the approximation of finite trajectories of @umous nonlinear
systems [5, 9]. The book [6] presents a theorem that showsa tiype 2 DNN can
approximate general nonlinear systems.

Corollary 1 (Garceset al., 2003). Let K and U be compact subsets & and
R™, respectively, and : K x U — R" be a continuous mapping. Then, for
arbitrary ¢ > 0, there exists an integeW,, ann x N, matrix W5, an N, x n
matrix 1/, an N;, x m matrix~;, and anN, dimensional vectob such that:

Jdmax ||f(z,u) — Wao(Whz + mut )|l < (7)

whereos : RM™ — R is a sigmoid mapping whose elements are defined as
follows:

(1)
o(z) = : (8)
O-(ZNh)a

wherez = [2,...,2y,]T € RV,

Proof. The proof follows directly from Theorem 2, by making the &lling sub-
stitutions: K «+ K x U, g < (n+m), z « [T uT]", W} «— [W; 7.

Theorem 3. Let D be an open subset &, andU an open subset &&™. Let

f:DxU — R" be aC'-mapping,u : [0,7] — U be aC" function, K be a

compact subset db. Suppose that there exists a $&tC K so that any solution
x(t) with initial valuex(0) € K of the non-autonomous system

w(t) = f(x(t), u(t)) (9)

is defined o/ = [0,7] (0 < T < oo) for u(t) € U witht € I, and is included
in K for anyt € I. Then, for an arbitrary: > 0, there exists a non-autonomous
dynamic neural network with output units with states® € R" and N, hidden
units with states” € R+, of the form:

Z=—pz+4+wo(z) + va, (10)

T _ . .
wherez = [2°7 2" " € R, @ = [u a")" € R*™, § € RVt is @
diagonal matrixw € R*+Vexn+Ne gndy € R*+Vex2m gre weight matrices, such
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that for a solutionz(t) satisfying Equation (9), and an appropriate initial state,
the states of the output units of the netwark), approximate the solution of the
non-autonomous system:

max ||z(t) — 2°(t)|| <e; I =10,T] (0<T < ). (11)

tel

Proof. See the book [6].

Theorem 4. Let D be an open subset &", andU and open subset &"™. Let

f: D xU — R” be aC'-mapping,u : [0,7] — U be aC" function, K be a

compact subset db. Suppose that there exists a $&tC K so that any solution
x(t) with initial valuez(0) € K of the non-autonomous system

#(t) = f(2(t), u(t)), (12)

is defined o’ = [0,7] (0 < T' < oo) for u(t) € U witht € I, and is included
in K for anyt € I. Then, for an arbitrary; > 0, there exists a non-autonomous
dynamic neural network with output units with states? € R™ and N, hidden
units with states € R+, of the form:

Z=—Fz+wo(z)+ yu, (13)

wherez = [277 20" |7 € RHVn, ) = [27 27 )T € RV 4 = [uf o7)7 € R2™,
B € RrNexntNi s g diagonal matrixw € RPHVRXn+Ne gnd y € RHNVRx2m
are weight matrices, such that for a solutieiit) satisfying Equation (12), and
an appropriate initial state, the states of the output utshe network?(t),
approximate the solution of the non-autonomous system:

max ||z(t) — 2P(t)|| <ey; I =[0,T] (0<T < o0). (14)

tel

Proof. This proof uses Lemmas 1, 2 and 3, which are given in the append
For givens;, > 0, choose > 0, e, > 0 and such that+c, < e, 8, < —R1lo

Define now the mapping’ : R"*"r x R?™ — R"+¥» as follows: ety
F(z,u) = —fz +wo(z) + yu. (15)

Then the dynamic system defined byis:
z=—Pz+wo(z) + v, (16)
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whered = [ 02]", 6z = [0x On,xn, )Ty 02 = [2 = 27], 7 = [7 Opngny ) x(n-8) )
Equation (16) is equivalent to Equation (10).
Define a new mapping : R"*"» x R?™ — R+ as follows:

F(2,0) = =02 + 0o (Z + [Onxn Lt Ny (i 5] @) + 7. (17)
Then the dynamic system defined byjis:

Equation (18) is equivalent to Equation (13). Lgtis the Lipschitz constant of
F in z. ltis not difficult to infer thatF is also Lipschitz, so that Lemma 2 is
applicable toF and .

Note that

1F(z,0) = FZ D)l = [lwll - [lo(2) = (= + 82)]] (19)

Suppose that; is an element of and thatjz; is an element ofz. Sigmoid
function is a continuous and differentiable function. Byngsiraylor expansion
to this sigmoid function:

o (2%) — o(2% + dz:)|| =

|| — o' (x%)0x; — %0”($Oi)5xi2

— =00z, (20)
where »
O(6z") = / f<n+1>(t)@dt, (21)
» n!
by using Lemma 3
O(6z,") = O(n+1)(o%5z, (22)
for ¢ € [z, z + dz], therefore,
n+1
Ot < (02 @3)
n:
According to Equation (23), Equation (20) becomes
llo(x?%) — o(x% + 0x;)|| < dxyd < ed, (24)



whered = || — o’(a%) — 10"(x,))6z; — -+ — o™ (C)2|| is bounded. In

conclusion, Equation (24) can be written as:
o (%) — o (a® + dz;)|| < ed, (25)
According to Equation (25), Equation (19) can be written as:
1F(2,3) = F(2,0)|| < ||wl|de, (26)

Equation (26) can be written as:

[F(Z,u) = F(z,9)|| <m, (27)
by using Lemma 2

la(t) = 2 (O] < L (eapliat) — 1), (28)
max ||2°(t) — 2" (1)]] < e, (29)

max |[z(t) — 2 (1)]| <

max(|[z(t) — 2°(@)]| + [|2°() = 2"@O) <

max [[2(t) — 2°()|] + max [[2°(t) — 2”(@)]] <
(e +¢) < ey, (30)

which completes the proof.

Theorem 5. Let D be an open subset &, andU an open subset &&™. Let

f:DxU — R" be aC'-mapping,u : [0,7] — U be aC" function, K be a

compact subset db. Suppose that there exists a $&tC K so that any solution
x(t) with initial valuez(0) € K of the non-autonomous system

#(t) = f(2(t), u(t)), (31)

is defined o = [0,7] (0 < T < oo) foru(t) € U witht € I, and is included
in K for anyt € I. Then, for an arbitraryg; > 0, there exists a non-autonomous
dynamic neural network with output units with states? € R™ and N, hidden
units with states” € R™», of the form:

Z=—Fz+wo(z)+yu, (32)

9



whereo is the output vector from another neural netwarks [277 th]T €
Rn+Nh, 2y = [meT th]T c RTL-‘:—N}L’ 0 = [uT uT]T € R>™, Be R +Nixn+Ny g g
diagonal matrixw € R+ VwxntNn gndy € R*HVex2m gre weight matrices, such
that for a solutionz(¢) satisfying Equation (12), and an appropriate initial state
the states of the output units of the netwark), approximate the solution of the
non-autonomous system:

max ||z(t) — z°(t)|| <e3; I =[0,T] (0<T < o0). (33)

tel

Proof. This proof is similar to Theorem 4 and uses Lemmas 1, 2 and @hwh
are given in the appendix.

For givenes > 0, chooses > 0,4 > 0 and such that + ¢4 < €3, 64 <

ylle 7 Define now the mapping' : RV x R2™ — R**+V as follows:

ezp(lcT—1)
F(z,u) = —fz +wo(z) + yu. (34)
Then the dynamic system defined byis:

Z=—0z+wo(z)+ 7u, (35)
whereu = [u 0z]", 0z = [0z Oy, xn, )7 02 = [ — 2], 7 = [V O(nrNp) x (nt- ) -
Equation (35) is equivalent to Equation (10).

Define a new mapping : R**V» x R?™ — R+ as follows:
F(2,0) = =02 + wo(Z + [Onxn Lnsn)xnin] @) + 7. (36)
Then the dynamic system defined byis:
Z= =37+ wo(Z+ Onxn Intnp)xnrny|t) + T (37)

Equation (37) is equivalent to Equation (32). Letis the Lipschitz constant of
Fin z. ltis not difficult to infer thatF is also Lipschitz, so that Lemma 2 is
applicable toF and .

Note that

I1F(Z,a) - F(Z0)|| = |lw]| - llo(2) — o(z + 62)| (38)
Using the similar method as in 4, the following equation ddu obtained:
|F(2,a) = F(z,a)|] < m, (39)

10



by using Lemma 2

e (2) = 2] < - (eapliat) — 1), (40)
max|[[2°(t) — 2°(t)[| < e, (41)
max [[x(t) — 2°(t)]| <
max(|z(t) — 2] + ||l2°(t) —2*)]) <
max [[z(t) — 2° ()| | 4+ max|[2°(t) — 2 ()] <
(es+¢€) < es. (42)
which completes the proof. [ |

5. NLARX and itstraining procedure

The NLARX structure can take into account the dynamics of gstesn by
feeding previous network outputs back into the input layierlso enables the
user to define how many previous output and input time stepeeguired for rep-
resenting the systems dynamics best. In this paper, an NLAB3eins applied.
It represents a recurrent neural network, which fits the @agpf non-linearity
of the problem. A typical structure of a NLARX model is illugted in Figure 4.
The inputs are represented byn) and the outputs are described #y:). The
formulation of this NLARX model can be described as:

yn) = Flyln—1),...;y(n —ny),u(n—1),...,
u(n —nu),0) (43)

whereny is the number of past output terms used to predict the cuowgput,nu
is the number of input terms used to predict the current dutpu

This neural network model training problem can be cast asnalinear un-
constrained optimization problem:

InHIIlFM 9 ZM 2M Z ||y -y k|9 || (44)

whereZy, = [y(k),u(k)]x=1.. s IS @ training data sei(k) represents the mea-
sured outputy(k|€) is the predicted output from the neural network NLARX
- || is 2-norm operation, anlis a parameter vector.

11
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Figure 4: Structure of an NLARX

The optimization problem minimizes the averaged distarete/éen the pre-
dicted outputs and the measured output of training samplesdicted output of
an NLARX model is a function of regressors which are transtdiroms of past
inputs and past outputs. Usually this function has a linéagkband a nonlinear
block. The predicted output of the model is the sum of the atstpf the two
blocks. Typical regressors are simply delayed input or wuyariables. More
advanced regressors are in the form of arbitrary user-akfurections of delayed
input and output variables.

The NLARX training process is as follows. Given a neural neknescribed
by Equation (43), there is an error metric that is referredd@erformance in-
dex of Equation (44), which is to be minimized. This index ieepresentation
of the approximation of the network to some given trainingtgras. The task
will be to modify the network parameteéisto reduce the inde¥’, (6, Z,,) over
the complete trajectory to achieve the minimal value. s f@per the neural
networks are trained using gradient descent algorithmgewhe initial value of
0 is perturbed several times in order to avoid the local mihiszdution. The
gradient descent methods will calculate the vedigir,; whose elements are
O (j =1,--- ,i,---,p). The training algorithm will find the parameters of the

0
network for which the performance index has reached a ddsiralue. Given

12



a vectorising trajectory for the network output and tragnpatterns, the perfor-
mance index is the Euclidean norm of the error matrix of thelelraining batch
for the output.

Fig 5 shows the training (the top figure) and validation (tlo&tdm figure)
trajectories forx. of the crane. Fig 6 shows the training (the top figure) and
validation trajectories (the bottom figure) for of the crane. Fig 7 shows the
training (the top figure)and validation (the bottom figura) §. of the crane. Fig
7 shows the training (the top figure) and validation (thedrattigure) forz. of the
crane. This NLARX is used to train a type 3 DNN. NLARX is used ireaursive
way, which uses the past mode outputs.

0.8

x (m)

0.6 8
0.2
0.8

. . . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
T T T T T T T T T

. . . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 5: Training and validation trajectories of NLARX for

. . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

y(m)

I I I I I I I I I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 6: Training and validation trajectories of NLARX fgr
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Figure 7: Training and validation trajectories of NLARX feyr

6. Example

The 3D crane consists of a payload hanging on a penduluntiftit@e wound
by a motor mounted on a cart (Figure 8). The 3D crane systenulisvariable, it
exhibits highly nonlinear dynamics, and has oscillatoriideour with different
time scales, which makes it a challenging benchmark forineat identification,
particularly with recurrent model structures. The payl@alifted and lowered in
the z direction. Both the rail and the cart are capable of horizantion in thex
direction. The cart is capable of horizontal motion alorgridl in they direction.
Therefore the payload attached to the end of the lift-line m@ve freely in 3 di-
mensions. The 3D crane is driven by the three DC motors andlysifiterfaced
to MATLAB and SIMULINK. The crane has three manipulated itguwvhich are
the references to PWM circuits that drive three DC motors faredneasurements
obtained via optical encoders.

The schematic diagram of the 3D crane is given in Figure 9.

There are five measured quantities:

e 1, (not shown in Figure 9) denotes the distance of the rail vinghdart from
the centre of the construction frame;

¢ y, (not shown in Figure 9) denotes the distance of the cart flercentre
of the rail;

e R denotes the length of the lift-line;

e o denotes the angle between thaxis and the lift-line;

14



Figure 8: The 3D crane system setup.

e 7 denotes the angle between the negative direction onr #vés and the
projection of the lift-line onto the:z plane.

The position in cartesian co-ordinates of the payload iot&hbyz., v., z. and
can be found from the five measurements using kinematic emqsagiven in [11].
A dynamic model of this crane is shown in [11].

According to Theorem 1, the dynamics of this crane could gbixee identified
by a feedforwad neural network with a sufficient number ofdeid states. How-
ever, due to personal computer’'s memory limits, a feedfaiwa@ural network is
not found for the crane. Instead, A NLARX (non-linear autoesgive exogenous
input) model is identified for the dynamics of the crane, whtould be used to
illustrate the idea of the type 3 DNN. The NLARX model could lescribe as
follows: The output of the NLARX is feed back into the input éaty In addition,
the input allows consideration of previous inputs in ora@antorporate dynamics
within the systems behavior.

Three neural networks of type 1, 2 and 3 were used to iderttifyetinput
three-output models, which had as inputs the three referesitages to the PWM
circuits and as outputs the three co-ordinates of the pdypaeition. Training
was performed using a genetic algorithm with real enconf2fgin these three
cases, a 6-state dynamic neural network structure was chésgure 10 shows
the training output and the model output using the type lalexetwork. Figure

15



Figure 9: 3D crane system: coordinates and forces.

11 shows the validation output and model output for the saase.c Figure 12
shows the training output and the model output for type 2 dyoaeural network.
Figure 13 shows the validation data and model output for @ineescase. For both
Figure 13 and Figure 12, there is no improvement on the esuth the increase
of iterations. Figure 14 shows the training output and the@houtput for type
3 dynamic neural network. Figure 15 shows the validatioa dad model output
for the same case.

It is not difficult to see that a type 2 DNN had problems to apprate the
dynamic behaviour of the system, whereas the type 1 and 3 DWNMNch was
easier to train, was able to approximate the system moreatety The better
approximation capability exhibited by the type 1 and 3 DNM ba attributed to
the fact that this structure uses both output and inputimé&dion, as it is a series-
parallel model. But type 3 DNN does not require the plant outpoperate.

16
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Figure 10: Training trajectories and model outputs usirgtyfpe 1 DNN

7. Conclusions

This paper presented a novel hybrid dynamic neural netwodktsire and it
has been proved that the network has the ability to apprdeifiraite trajectories
of non-autonomous nonlinear dynamic systems and provigiifiey which does
not depend on the outputs of the plant for operation. An exam@s been given
to demonstrate the effectivity of the proposed structurapproximating com-
plex nonlinear dynamics, and its performance has been falucompared, in
terms of training difficulty and approximation ability, \wita previously proposed
dynamic neural network structure.
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The following Lemmas are useful for the proof of Theorem 4.

Lemma 1 (Gronwall’sinequality). Letv : [ty,t;] — R be continuous and non-
negative. Suppose that> 0 and L > 0 are real numbers such that

v(t) < C+ /t Lo(t)dr (.1)

to
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Time(s)

Figure 11: Validation trajectories and model outputs usirggtype 1 DNN

forall ¢ € [to,tf]. Then

v(t) < Cexp(Llt — tol) (-:2)
forall ¢ € [to, ]
Proof. See Chapter 8 of [7].

Lemma?2. LetF, F : S x U — R" be Lipschitz continuous mappings ahde
a Lipschitz constant of'(z,u) in x on S x U. Suppose that for alt € S and
ueU: 3

||F(z,u) — F(x,u)|| <e (.3)

If z(t) andz(t), are solutions to

8
I
T

(,u)
) (.4)

538
I

T, U
respectively, on some interval= {t € R|t,

<t <ts},andxz(ty) = Z(to), then
l(t) = 2@O)]] <

(exp(L[t —to]) — 1) (.:5)

o

holds for allt € 1.
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Figure 12: Training trajectories and model outputs usimgtyipe 2 DNN

Proof. Please see Chapter 15 of [7].

Lemma 3. Let f(x) be an integrable function in the intervéd, b). A pointc can
be found betweeds andb such that

/ f(x)dz = f(c)(a— ) (6)

Proof. See Chapter XIII of [8].
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